1.1.EPREUVE DE MATHEMATIQUES-SERIE A2

REPUBLIQUE GABONAISE DIRECTION DU BACCALAUREAT

2015 - MATHEMATIQUES

Séries : A2

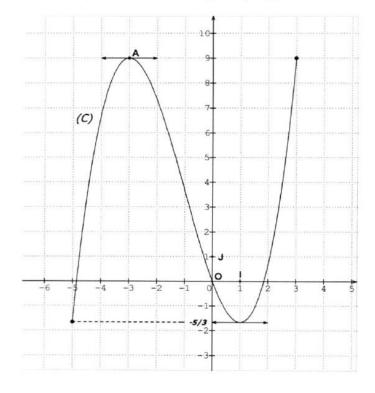
Durée: 2 heures

Coef.: 2

L'usage de la calculatrice est autorisé

Problème (14 points)

Partie A


Lecture graphique

On considère la fonction f dont la représentation graphique (C) est donnée ci-dessous dans le repère (0, I, J) où : $f(1) = f(-5) = -\frac{5}{3}$

Répondre aux questions suivantes par lecture graphique.

- 1. Donner l'ensemble de définition D_f de la fonction f.
- 2. Donner f(-3). (image de -3 par f).
- 3. Dresser le tableau de variation complet de la fonction f. (ensemble de définition, signe de la dérivée, variation et les images de -5; -3; 1; 3.)
- Donner les trois solutions de l'équation : f(x) = 0.
 On admet que la droite passant par le point A(-3; 9) et par l'origine du repère O(0; 0) est la tangente à cette courbe au point d'abscisse 0.

Déterminer une équation de cette tangente (AO) puis déduire la valeur de f'(0).

Partie B

La courbe précédente est en faite la représentation graphique d'une fonction définie sur [-5;3] par : $f(x) = \frac{1}{3}x^3 + ax^2 - 3x$ où a est un nombre réel à déterminer.

1) Déterminer a sachant que f(3) = 9. (on présentera la démarche sur la copie)

Pour la suite on donne : $f(x) = \frac{1}{3}x^3 + x^2 - 3x$ avec $D_f = [-5; 3]$.

- 2) a- Calculer f'(x) où f' désigne la dérivée de la fonction f.
- b- Montrer que f'(x) = (x+3)(x-1) puis étudier son signe sur [-5;3].
- 3) a- Pour tout $k \in [0;4], -1-k \in D_f$ et $-1+k \in D_f$. Calculer, en fonction de k, les nombres f(-1-k) et f(-1+k). (rappel $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$) b- Vérifier que $f(-1-k) + f(-1+k) = \frac{22}{3}$.
 - c- En déduire que le point $\Omega\left(-1;\frac{11}{3}\right)$ est un centre de symétrie de (C).

Exercice (6 points)

Pour chaque question posée, trois réponses sont proposées, mais une seule est exacte. Le candidat reportera sur sa copie sa réponse.

N°	Affirmations	Réponses
1	La suite (u_n) vérifiant $u_{n+1} = \frac{1}{5}u_n$ est une suite	a) Arithmétique b) Géométrique c) Ni l'un ,ni l'autre
2	L'équation $e^x = 2$ admet sur IR	a) Aucune solution b) Une solution c) Deux solutions
3	Soit a et b deux réels strictement positifs $lna + lnb$ est égal à	 a) lna × lnb b) ln(a + b) c) lnab
4	La fonction f définie de \mathbb{R} vers \mathbb{R} par : $f(x) = \ln (4x + 1)$ a pour ensemble de définition :	a)] 0, $+\infty$ [b) \mathbb{R} c)] $-\frac{1}{4}$; $+\infty$ [
5	Le PGCD de 1512 et 3150 est	a) 456 b) 37800 c) 126
6	Dans le système binaire 19 s'écrit	a) XIX b)10001 c)10011